<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /></head><body style='font-size: 10pt; font-family: Verdana,Geneva,sans-serif'>
<p>Estimadas/os,</p>
<p>Quedan todas/os invitadas/os al próximo seminario a realizarse el <span style="text-decoration: underline;"><strong>viernes 25 de octubre a las 11hs</strong></span>.</p>
<p>El mismo estará a cargo del Prof. Dr. <strong>Igal Szleifer</strong>. Departamentos de Ingeniería Biomédica, Química y Medicina. <strong>Universidad de Northwestern</strong>. EE.UU.</p>
<p>Su charla se titula: <br />"Nanopores: Protein Confinement"</p>
<p>Se envía a continuación un breve resumen:<br />1) How Does Confinement Change Ligand−Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels</p>
<p>We present systematic studies for the binding of small model proteins to ligands attached to the inner walls of long nanochannels and short nanopores by polymeric tethers. Binding of proteins to specific ligands inside nanometric channels and pores leads to changes in their ionic conductance, which have been exploited in sensors that quantify the concentration of the proteins in solution. The theoretical predictions presented in this work are aimed to provide a fundamental understanding of protein binding under geometrically confined environments and to guide the design of this kind of nanochannel-based sensors. The theory predicts that the fraction of the channel volume filled by bound proteins is a nonmonotonic function of the channel radius, the length of the tethers, the surface density of the ligands and the size of the proteins.</p>
<p>2) Orientational Pathways during Protein Translocation through Polymer-Modified Nanopores</p>
<p>Protein translocation through nanopores holds significant promise for applications in biotechnology, biomolecular analysis, and medicine. However, the interpretation of signals generated by the translocation of the protein remains challenging. In this way, it is crucial to gain a comprehensive understanding on how macromolecules translocate through a nanopore and to identify what are the critical parameters that govern the process. In this study, we investigate the interplay between protein charge regulation, orientation, and nanopore surface modifications using a theoretical framework that allows us to explicitly take into account the acid−base reactions of the titrable amino acids in the proteins and in the polyelectrolytes grafted to the nanopore surface. Our goal is to thoroughly characterize the translocation process of different proteins (GFP, β- lactoglobulin, lysozyme, and RNase) through nanopores modified with weak polyacids. Our calculations show that the charge regulation mechanism exerts a profound effect on the translocation process. The pH-dependent interactions between proteins and charged polymers within the nanopore lead to diverse free energy landscapes with barriers, wells, and flat regions dictating translocation efficiency. Comparison of different proteins allows us to identify the significance of protein isoelectric point, size, and morphology in the translocation behavior. Taking advantage of these insights, we propose pH responsive nanopores that can load proteins at one pH and release them at another, offering opportunities for controlled protein delivery, separation, and sensing applications.</p>
<p>El evento tendrá lugar en el <strong>auditorio</strong> ¨Prof. Dr. Luis N. Epele¨ del <strong>IFLP</strong>, sito en la diagonal 113 entre 63 y 64.</p>
<div><br />
<p><span style="color: #999999;">**************************************************************************</span><br /><span style="color: #999999;">Gabriel S. Longo, PhD</span><br /><span style="color: #999999;">Investigador Independiente - CONICET</span><br /><span style="color: #999999;">Profesor Adjunto - Dpto. Física, UNLP</span><br /><span style="color: #999999;">Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA),</span><br /><span style="color: #999999;">UNLP-CONICET</span><br /><span style="color: #999999;">Diag. 113 y Calle 64</span><br /><span style="color: #999999;">(B1906ZAA) La Plata, Argentina</span><br /><span style="color: #999999;">Phone: +54 (221) 425-7430/7291, ext:195</span><br /><span style="color: #999999;">**************************************************************************</span></p>
</div>
</body></html>