<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html><body style='font-family: Verdana,Geneva,sans-serif'>
<p> </p>
<p>-------- Mensaje original --------</p>
<table border="0" cellspacing="0" cellpadding="0">
<tbody>
<tr><th align="right" valign="baseline" nowrap="nowrap">Asunto:</th>
<td>Coloquio del Departamento de Matemática -- martes 9/8, 15:00 hs, Aula 5 -- Wilderich Tuschmann (Karlsruher Institut für Technologie, Alemania)</td>
</tr>
<tr><th align="right" valign="baseline" nowrap="nowrap">Fecha:</th>
<td>2016-08-03 11:50</td>
</tr>
<tr><th align="right" valign="baseline" nowrap="nowrap">Remitente:</th>
<td>Información Exactas <info@exactas.unlp.edu.ar></td>
</tr>
<tr><th align="right" valign="baseline" nowrap="nowrap">Destinatario:</th>
<td>"secre, secre" <secre@mate.unlp.edu.ar>, "secre, secre" <secre@fisica.unlp.edu.ar></td>
</tr>
</tbody>
</table>
<p> </p>
<!-- html ignored --><!-- head ignored --><!-- meta ignored -->
<pre>Se difunde la siguiente invitación.-


--------------------------------

Estimados

el próximo martes 9 de agosto continuaremos con las reuniones periódicas 
del Coloquio del Departamento de Matemática.
En esta ocasión, la charla estará a cargo de Wilderich Tuschmann 
(Karlsruher Institut für Technologie, Alemania)

Día: martes 9 de agosto
Hora: 15:00 hs
Aula: Aula 5, Departamento de Matemática.

Expositor: Wilderich Tuschmann (Karlsruher Institut für Technologie, 
Alemania)

Título: Spaces and moduli spaces of Riemannian metrics

Resumen:
The existence and construction of complete metrics with certain 
prescribed curvature properties
such as, e.g., positivity of scalar or Ricci curvature, nonnegativity or 
negativity of sectional curvature, etc.,
constitutes a basic question and task in Riemannian geometry.
On the other hand, once the respective existence problem has been solved,
there is an equally important second one, namely: How `many' metrics of the
given type are there, and
how `many' different geometries of this kind does the manifold actually 
allow?

To answer these questions, one is led to study the corresponding
spaces of metrics that satisfy the curvature characteristics one is 
interested in,
as well as their respective moduli spaces, i.e., the quotients of these 
spaces
by the action of the diffeomorphism group given by pulling back metrics.

In my talk, I will present and survey recent results about such spaces 
and moduli spaces
of complete Riemannian metrics with curvature bounds on open and closed 
manifolds,
here focussing mainly on connectedness and disconnectedness properties,
and also discuss several open problems and questions in the field.

Están invitados a participar!

Para más información del coloquio, visitar la página web:
<a href="http://www.mate.unlp.edu.ar/coloquiodm/">http://www.mate.unlp.edu.ar/coloquiodm/</a>




---
Este mensaje no contiene virus ni malware porque la protección de avast! Antivirus está activa.
<a href="https://www.avast.com/antivirus">https://www.avast.com/antivirus</a>

</pre>
<div> </div>
</body></html>