<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html><body style='font-family: Verdana,Geneva,sans-serif'>
<p align="center"><strong style="text-align: left;"><br /></strong></p>
<p style="text-align: left;" align="center"><span style="text-decoration: underline; font-size: small;"><strong style="text-align: left;">Estimados:</strong></span></p>
<p style="text-align: left;" align="center"><span style="font-size: small;"><strong></strong><strong>Agradecemos la difusión del anuncio del <span class="il">seminario</span> del C<strong>iclo de Coloquios y <span class="il">Seminarios</span> </strong></strong><strong><strong>que se organiza en el Instituto de Física La Plata</strong>/ <strong>Departamento de Física.</strong></strong> </span></p>
<p style="text-align: left;" align="center"><span style="font-size: small;"><strong>Se adjunta material para difundir en carteleras.</strong></span></p>
<p style="text-align: left;" align="center"><span style="font-size: small;"> </span></p>
<p style="text-align: left;" align="center"><span style="font-size: small;"><strong>Saludos, </strong></span></p>
<p style="text-align: left;" align="center"><span style="font-size: small;"> <strong>Atte.</strong></span></p>
<p style="text-align: left;" align="center"><span style="font-size: small;"> <strong>Administración IFLP</strong></span></p>
<p align="center"><strong><span style="text-decoration: underline;"><br /></span></strong></p>
<p align="center"><strong><span style="text-decoration: underline;">_____________________________________________________________</span></strong></p>
<p align="center"><strong><span style="text-decoration: underline;"><br /></span></strong></p>
<p align="center"><span style="font-size: large;"><strong><span style="text-decoration: underline;">CURSO BREVE del </span></strong><strong><span style="text-decoration: underline;">IFLP y DEPARTAMENTO DE FÍSICA</span></strong></span></p>
<p align="center"> </p>
<p align="center"><strong><span style="text-decoration: underline;">DESTINADO A ESTUDIANTES GRADUADOS E INVESTIGADORES</span></strong></p>
<p align="center"> </p>
<p align="center"><span style="font-size: large;"><strong><span style="text-decoration: underline;"> Martes 9 de agosto a las 11hs. Aula Chica </span></strong></span></p>
<p align="center"><span style="font-size: large;"><strong><span style="text-decoration: underline;">Jueves 11 de agosto a las 15hs. Aula Chica</span></strong><strong><span style="text-decoration: underline;"></span></strong></span></p>
<p> </p>
<p style="text-align: center;"><strong><span style="text-decoration: underline;">TÍTULO:</span></strong><strong> </strong><span style="font-size: large;"><strong>An introduction to affine differential geometry</strong></span><strong></strong></p>
<p style="text-align: center;"><strong> </strong></p>
<p style="text-align: center;"><strong><span style="text-decoration: underline;">EXPONE</span></strong><strong>:</strong><span style="font-size: large;"><strong> Peter B. Gilkey. Mathematics Department, University of Oregon, USA</strong></span></p>
<p style="text-align: center;"><strong> </strong></p>
<p style="text-align: justify;"><strong><span style="text-decoration: underline;">RESUMEN:</span></strong><strong> </strong><span style="font-size: medium;"><strong>Let M be a smooth m-dimensional manifold and let </strong><strong>∇</strong><strong> be a connection on the tangent bundle of M. We say that the pair (M, </strong><strong>∇</strong><strong>) is an <em>affine manifold</em>if </strong><strong>∇</strong><strong> is torsion free, i.e., if </strong><strong>∇</strong><strong>_XY-</strong><strong>∇</strong><strong>_YX=[X,Y] for any pair of vector fields X and Y. If  (M,g) is a Riemannian manifold, let </strong><strong>∇</strong><strong><sup>g</sup></strong><strong> be the Levi-Civita connection. Then, (M, </strong><strong>∇</strong><strong><sup>g</sup></strong><strong>) is an affine manifold. Thus, the notion of an affine structure is a generalization of the notion of a Riemannian structure. In these lectures the notions of an affine Killing vector field and  an affine gradient Ricci soliton will be defined. These will be examined in the context of homogeneous affine surfaces and the moduli space of homogeneous affine surfaces will be discussed.</strong><strong></strong></span></p>
<p style="text-align: justify;"><span style="font-size: medium;"><strong> </strong></span></p>
</body></html>