<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html><body style='font-family: Verdana,Geneva,sans-serif'>
<p> </p>
<blockquote type="cite" style="padding-left:5px; border-left:#1010ff 2px solid; margin-left:5px">
<p align="center"><strong><span style="text-decoration: underline;"><br /></span></strong></p>
<p align="center"><span style="font-size: medium;"><strong><span style="text-decoration: underline;">SEMINARIO DEL IFLP y DEL DEPARTAMENTO DE FÍSICA</span></strong></span></p>
<p align="center"><span style="font-size: medium;"><strong><span style="text-decoration: underline;">JUEVES 7 DE JULIO</span></strong></span></p>
<p align="center"><span style="font-size: medium;"><strong><span style="text-decoration: underline;">15hs. AULA CHICA</span></strong><strong><span style="text-decoration: underline;"></span></strong></span></p>
<p align="center"> </p>
<p style="text-align: center;"><span style="font-size: medium;"><span style="font-size: small;"><strong><span style="text-decoration: underline;">TÍTULO:</span></strong></span><strong> QCD Sum Rules approach for the gluon condensate and deconfinement.</strong></span></p>
<p style="text-align: center;"><span style="font-size: medium;"><strong> </strong></span></p>
<p style="text-align: center;"><span style="font-size: medium;"><span style="font-size: small;"><strong><span style="text-decoration: underline;">EXPONE</span></strong></span><strong><span style="font-size: small;">:</span> <span style="font-size: large;">Marcelo Loewe</span></strong></span></p>
<p><strong><br /></strong></p>
<p style="text-align: justify;">After a brief introduction of the QCD Sum Rules approach, including its extensión to the finite temperature and density scenario, we will concentrate on the finite energy sum rules (FESR) for the two point axial-vector current correlator in the presence of an external magnetic field, in the weak limit and at zero temperatura. Both the perturbative QCD and the hadronic contribution to the sum rules get explicit magnetic-field-dependent corrections which in turn induce a magnetic field dependence on the hadronic continuum threshold S<sub>0</sub> and on the gluon condensate. We find from the dimensión d=2 first FESR that the magnetic field dependence of S<sub>0 </sub>is proportional to the absolute value of the light-quark condensate increasing, therefore, with an increasingn field strength. This shows that the parameter describing chiral symmetry restoration and deconfinement behave similarly as funtions of the magnetic field. At zero temperatura, the magnetic field plays the role of catalyzing agent of both chiral symmetry breaking and confinement. From the second FESR, dimensión d=4, we obtain also the behavior of the gluon condensate as function of the magnetic field. This condensate aslo increases as function of the magnetic field.</p>
<p> </p>
</blockquote>
<p> </p>
<div> </div>
</body></html>