[Todos] Fwd: Coloquio del Departamento de Matemática -- jueves 25/8, 11:00 hs, Aula 5 -- Julio Rossi (UBA)

Asistentes de Secretaria de Fisica secre2 en fisica.unlp.edu.ar
Vie Ago 19 12:55:06 ART 2016


 

-------- Mensaje original -------- 

		ASUNTO:
 		Coloquio del Departamento de Matemática -- jueves 25/8, 11:00 hs,
Aula 5 -- Julio Rossi (UBA)

		FECHA:
 		2016-08-19 12:45

		REMITENTE:
 		Coloquio del Departamento de Matemática <coloquiodm at mate.unlp.edu.ar>

		DESTINATARIO:
 		grad at mate.unlp.edu.ar, "docentes at mate.unlp.edu.ar"
<docentes at mate.unlp.edu.ar>, "secre2 at fisica.unlp.edu.ar"
<secre2 at fisica.unlp.edu.ar>, Alumnos <alumnosm at gmail.com>,
info at exactas.unlp.edu.ar

Hola a todos, 

el próximo jueves 25 de agosto continuaremos con las reuniones 
periódicas del Coloquio del Departamento de Matemática. 
En esta ocasión, la charla estará a cargo de Julio Rossi [1] (UBA) 

La información completa es la siguiente: 

DÍA: jueves 25 de agosto 
HORA: 11:00 hs 
AULA: Aula 5, Departamento de Matemática. 

EXPOSITOR: Julio Rossi (UBA) 

TÍTULO: Nonlocal evolution equations 

RESUMEN: (Versión pdf aquí [2]) 
We study the fractional Laplacian evolution 
equation given by 
$$u_t (t,x)=int_{A} 
frac{1}{vert x - y vert^{N+sp}}|u (t,y)-u(t,x)|^{p-2}(u (t,y)-u(t,x))
dyqquadhbox{for 
, },$$ 
, . 
In a bounded domain we deal with the Dirichlet problem by taking and in
, and the Neumann problem by taking . 
We include here the limit case that has the extra difficulty of giving a
meaning to $frac{ u(y) - u(x)}{vert u(y) - u(x) vert} $ when . 
We also consider the Cauchy problem in the whole by taking . 
We find existence and uniqueness of strong solutions for each of the
above mentioned problems. We also study the asymptotic behaviour of
these solutions as . Finally, we recover the local Laplacian evolution
equation with Dirichlet or Neumann boundary conditions, and for the
Cauchy problem, by taking the limit as in the nonlocal problems
multiplied by a suitable scaling constant. 

Están invitados a participar!

Para más información del coloquio, visitar la página web aquí [3] 

Saludos,
Gastón 
 

Links:
------
[1] http://mate.dm.uba.ar/~jrossi/
[2] http://www.mate.unlp.edu.ar/coloquiodm/abstracts/rossi.pdf
[3] http://www.mate.unlp.edu.ar/coloquiodm/
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.fisica.unlp.edu.ar/pipermail/todos/attachments/20160819/b9c1f2c5/attachment.html>


Más información sobre la lista de distribución Todos