[Todos] Fwd: Coloquio del Departamento de Matemática -- jueves 25/8, 11:00 hs, Aula 5 -- Julio Rossi (UBA)
Asistentes de Secretaria de Fisica
secre2 en fisica.unlp.edu.ar
Vie Ago 19 12:55:06 ART 2016
-------- Mensaje original --------
ASUNTO:
Coloquio del Departamento de Matemática -- jueves 25/8, 11:00 hs,
Aula 5 -- Julio Rossi (UBA)
FECHA:
2016-08-19 12:45
REMITENTE:
Coloquio del Departamento de Matemática <coloquiodm at mate.unlp.edu.ar>
DESTINATARIO:
grad at mate.unlp.edu.ar, "docentes at mate.unlp.edu.ar"
<docentes at mate.unlp.edu.ar>, "secre2 at fisica.unlp.edu.ar"
<secre2 at fisica.unlp.edu.ar>, Alumnos <alumnosm at gmail.com>,
info at exactas.unlp.edu.ar
Hola a todos,
el próximo jueves 25 de agosto continuaremos con las reuniones
periódicas del Coloquio del Departamento de Matemática.
En esta ocasión, la charla estará a cargo de Julio Rossi [1] (UBA)
La información completa es la siguiente:
DÍA: jueves 25 de agosto
HORA: 11:00 hs
AULA: Aula 5, Departamento de Matemática.
EXPOSITOR: Julio Rossi (UBA)
TÍTULO: Nonlocal evolution equations
RESUMEN: (Versión pdf aquí [2])
We study the fractional Laplacian evolution
equation given by
$$u_t (t,x)=int_{A}
frac{1}{vert x - y vert^{N+sp}}|u (t,y)-u(t,x)|^{p-2}(u (t,y)-u(t,x))
dyqquadhbox{for
, },$$
, .
In a bounded domain we deal with the Dirichlet problem by taking and in
, and the Neumann problem by taking .
We include here the limit case that has the extra difficulty of giving a
meaning to $frac{ u(y) - u(x)}{vert u(y) - u(x) vert} $ when .
We also consider the Cauchy problem in the whole by taking .
We find existence and uniqueness of strong solutions for each of the
above mentioned problems. We also study the asymptotic behaviour of
these solutions as . Finally, we recover the local Laplacian evolution
equation with Dirichlet or Neumann boundary conditions, and for the
Cauchy problem, by taking the limit as in the nonlocal problems
multiplied by a suitable scaling constant.
Están invitados a participar!
Para más información del coloquio, visitar la página web aquí [3]
Saludos,
Gastón
Links:
------
[1] http://mate.dm.uba.ar/~jrossi/
[2] http://www.mate.unlp.edu.ar/coloquiodm/abstracts/rossi.pdf
[3] http://www.mate.unlp.edu.ar/coloquiodm/
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.fisica.unlp.edu.ar/pipermail/todos/attachments/20160819/b9c1f2c5/attachment.html>
Más información sobre la lista de distribución Todos